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Abstract. Even when the fundamental group is intractable (i.e. not "good") 
many interesting 4-dimensional surgery problems have topological solutions. 
We unify and extend the known examples and show how they compare to 
the (presumed) counterexamples by reference to Dwyer's filtration on second 
homology. The development brings together many basic results on the nilpotent 
theory o f  links. As a special case, a class of  links only slightly smaller than 
"homotopically trivial links" is shown to have (free) slices on their Whitehead 
doubles. 

Introduction 

In dimension four, the basic machinery of  manifold theory, surgery and 
(5-dimensional) s-cobordism theorems, exist in the topological category when 
the fundamental group rr is "good" [FT] and is expected to fail for 7r free (and 
nonabelian) and in fact to fail for the "random" group. Nevertheless, even 
when rc is arbitrary many special surgery problems can profitably be solved. 
The theorem [F2] that the Whitehead double o f  any boundary link is (freely) 
slice is an example. These applications all involve some representation of  the 
surgery kernel by a submanifold M whose inclusion M C N into the source o f  
the surgery problem is 7h-null. Whereas all previous applications (IF2, F3, FQ] 
Chapter 6) required the second homology of M to be spherical, we find here 
(see Theorem 1.1 and Corollary 1.2) that the important condition is only that 
H2(M) = ~bo,(M), i.e. that the second homology lies in the co-term of the 
Dwyer [D] filtration as discussed in Sect. 2. This is an important philosophical 
point since for any n > 1, the "canonical" (or "atomic" compare [CF]) surgery 
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p rob l ems - to  which all others restr ic t-can be chosen so that the kernel is car- 
ried by a ~l-null submanifold M with H2(M) = ~b,,(M). As elsewhere in this 
subject, taking the limit is the essential problem. 

On the way to the main theorem we develop in Sect. 2 the nilpotent 
theory of  links and their (immersed) slices in a compact contractible 
4-manifold, using only group theoretic methods (and not Massey products). 
This unified perspective contains many previous results (e.g. from [MI ,M2,  
D , T , K , L  or C]) but uses only the largest possible indeterminancy for the 
invariants. 

A special case of  our method shows in Sect. 3 that a class of  links, larger 
than "boundary-links" and slightly smaller than "homotopically trivial links" 
have (free) slices bounding their Whitehead doubles (Theorem 3.1 ). This gen- 
eralizes the main results o f  both [F2] and [F3] . 

1. New surgery theorems 

We describe a naive (map-less) surgery theorem and then its corollary in the 
formal setting of  normal maps. 

Let N be a compact connected topological 4-maniibld, possibly with bound- 
ary. Let M C N be a connected codimension 0 submanifold with connected 
boundary. Assume that M is hi-null in N, i.e. the inclusion induces the zero 
map ~zj(M) -+ h i (N) .  Assume that HI(?M)  ~ HI(M).  Then elementary cal- 
culations (see Sect. 3) show that H2(M) is tree. This says roughly that homo- 
logically M resembles a thickening o f  a 2-complex. Note that the triviality of  
~ I (M)  ---+ zrl(N) implies a natural factorisatiou H2(M) --, 7r2(N) ~ H2(N) 
which we may use to define N + := NU/ff3-cells ) where the attachment is to 
the image in ~2(N) of a free basis [4 for H2(M). If [~1 and [~2 are two free 
bases they differ by a nonsingular integral linear transformation. Since any such 
transformation is a product o f  elementary matrices there exists a "deformation" 
of the 3-cells realizing a (simple) homotopy equivalence N/~ ~- NI~. Thus N + 
is well defined. It has the same 2-skeleton as N and satisfies 

H2(N+; 2~[zrl ]) ~ H2(M) Q-~ Z[~zl ] ~ Hz(N; 2~[ni]). 

The nonsingularity of  the intersection form on M (see Sect. 3) makes N + a 
Poincar6 space, but since Theorem 1.1 puts a manifold structure directly on 
N +, we will not offer a separate proof for this fact. With this notation, we state 
a naive surgery theorem for producing a manifold with the simple homotopy 
type o f  N +. Sect. 2 treats Dwyer ' s  [D] filtration of /42,  n2 C ~,,, C . . .  ~h C 
~b~,_l--- C q52 = / / 2 ,  appearing in the statement below. 

Theorem 1.1. I f  the second homology o f  M C N is in the co-term oJ 
Dwyer's .filtration, ~,,,(M) = H2(M ) then there exists a 4-man(fbM N', with 

8N' = (3N = ~N + and a (simple) homotopy equivalence (rely?) ( N ' , t ? N ' ) ~  
(N+,~N+),  i.e. a manifold structure (rel~) on N +. 
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Now consider the formal setting of  surgery. Suppose that N / ~ X  is a de- 
gree 1 normal map from a topological manifold to a Poincar6 space X.  There 
is the classical surgery obstruction 0 C L] ' ) (nIX)  to constructing a normal bor- 

dism to a (simple) homotopy equivalence N ' t ~ X .  (We suppose here that if 
~N+~/~ then .[[,w : ?N ~ ?X is already an equivalence and then the nor- 
mal bordism mentioned above is required to be relative to the boundary.)  It is 
always possible to normally bord f to a =l- isomorphism with 

K :=  ker(H2(N; 2 ~ [ = I X ] ) ~  H2(X; g [ n l X ] ) )  

a free ~[~zlX]-module so we assume that tiffs has been done. By definition, 
the surgery obstruction 0 vanishes if there is a (preferred) basis for the ker- 
nel K in which the intersection form is hyperbolic. We say that M C N 
represents the surgery kernel if He(M)c~)~ g [ n l X ]  ~ H2(N;7Z[alX]) maps 
isomorphically to K. We have: 

Corollary 1.2. Given M C N representin,q a stam&rd surgeo, kernel and 
sati,sfvin.g the hypotheses above: ~l-null, HI (M)  ~ HI(PM), and q~,,,(M) = 
H2(M) then there is a normal hordisnt front J" : N -~ X to a (shnple) 
hontotopy equivalence .[" : N ~ ~ X. 

The essential improvement over Chapter 6 of  [FQ] is that to be useful 
for surgery a ~l-null 2-complex K representing the surgery kernel (a neigh- 
borhood of  K corresponds to M above) need not be spherical but only satisfy 
(/),,,(K) = H2(K). We now explain this condition in detail. 

2. Group homology and the lower central series 

The lower central series of a group G is defined by G I := G,G ~+l : =  [G,G k] 
for k > I and may be extended to all ordinals by defining G ~ :=  ['-]/~<~ G[; for 
c~ a limit ordinal. We will be primarily interested in the cases k finite and the 
first limit ordinal ~.  There is an equivalent geometric formulation in terms of  
maps of  .gropes. 

Definition. A grope is a special pair (2-complex, cirele). A grope has" a class 
k = l, 2 . . . . .  oo. For k = 1 a grope is d~fined to he the pair (circle, circle). 
For k = 2 a .grope is precisely a compact oriented smfaee Z with a sin qh, 
boundary component. For k .finite a k-~lrope is &'.fined inductively as Jbllow: 
Let {~,,fi,,i = 1 . . . . .  genus} be a standard symplectie basis oJ" circles for  Z. 
For any positive integers Pi, q, with p, + q, > k and P,o + q,o = k for  at least 
one index io, a k-grope is Jbrmed by .qluin~j p,-gropes to each ~, and qi-,qropes 
to each fi,. Finally, an oo-grope is a nested union q[" (k-,qropes, .fixed circle) 

.lbr all k > 1. 

The important information about the "branching" of  a grope can be very 
well captured in a rooted tree as follows: For k = I this tree consists of a 
single vertex v0 which is the root. For k = 2 one adds 2 .genus (X)  edges to 
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v0 and may label the new vertices by eti,/3,. Inductively, one gets the tree for 
a k-grope which is obtained by attaching p,-gropes to e, and q,-gropes to /3, 
by identifying the roots of  the p,-(resp, q,-)gropes with the vertices labeled 
by ~,(resp. fl,). The below figure should explain the correspondence between 
gropes and trees. 

grope of 
class 5 

Fig. 2.1. 

associated tree 

leaves 

root 

Note that the vertices of the tree which are above the root t~0 come in pairs 
corresponding to the symplectic pairs of  circles in a surface stage and that such 
rooted paired trees correspond bijectively to gropes. Under this bijection, the 
leaves ( := non-root 1-valent vertices) of  the tree correspond to circles on the 
grope which freely generate its fundamental group. We will sometimes refer to 
these circles as the tips of the grope. The boundary of the first stage surface 
Z will be referred to as the bottom of  the grope. 

Lemma 2.1. For a space X, a loop 7 E ~E(X) k, 1 <_ k < ~o, ( land  only i./'~ 
bounds a map o1" some k-grope. Moreover, the class q[ a grope (G, 7) is the 
maximal k such that 7 E ~zl (G) k. 

Proof The first statement is proven by an induction on k, starting with the 
fact that the boundary circle 7 of a compact oriented surface Z with standard 
symplectic basis (<xi,fl,} is the product of commutators 7 = 1-[ [~i, fii]. Note 
that the "if-direction" is harder and uses the non-obvious re-bracketing fact 
[Gi, G q  C_ G i+j, see e.g. IV, p. 27] 

For the second statement we only have to show that the boundary circle 7 
of a k-grope (G, 7) does not lie in ~zl(G)~+l: Again this is best proven by an 
induction on k, starting with the fact that rtL(s is freely generated by all ~, 
and/3,. The Magnus expansion shows that 7 = l-I[cG/3,] does not lie in ~l(L') 3. 
Similarly, for k > 2, 7tI(G) is freely generated by those circles in a standard 
symplectic basis o f  a surface stage in G to which nothing else is attached. 
Now assume that the k-grope (G,~,) is obtained by attaching p,-gropes G~, 
to c~i and qi-gropes Gfi, to fii, P~ + qi ~ k. By induction, ~, r rcl(G~,) p'+I 
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and fl, ~ Tcl(G1~ ,)q' ~1 since p,,q, > 1. But the fi'ee generators of  nl(G~,) and 
~q(G/~,) are contained in the set of  free generators of  h i (G)  and therefore 
~, = fI[c~,,[I,] ~ zrl(G) ~+1. Again, this may be easiest seen by applying the 
Magnus expansion to hi(G), compare [MKS, Chapter 5]. [] 

Remark. Given 7 E ~Zl(X) ~, one may write it as a product o f  "right normed" 
commutators of  the form [xl,[x2,[ . . . .  xt] . . . .  ]]. Such a commutator bounds a 
map of  a very special k-grope, namely one whose rooted tree looks like 

X2 X1 

5p 
Xk.1 / ."  

\ 
root 

Fig. 2.2. 

This implies that 7 bounds a map of  a l/2-qrope of  order k (which is in- 
ductively defined to be obtained from a surface Z' by attaching l/2-gropes of  
order (k - 1 ) to a 1/2-symplectic basis {cr of  Z'). This gives a particularly 
symmetric class of  gropes. 

For each group G there is a least ordinal cr such that G ~ = G 1~ for all 
[~ > cr Call this stable stage G .... . 

Lemma 2.2. 7 r :zl(X) ..... ( / a n d  only ([7  bounds a map o f  an oc-#rope in X. 

Pro~[~ Follows from the definitions. [] 

Note. There are finitely presented groups with G 'n~ strictly smaller than G'". 
Geometrically, lying in G'" is equivalent to bounding maps of  possibly unrelated 
k-gropes for each k < ~o. 

The lower central series is connected to homology and thus the rest of  
topology by Stallings' theorem and Dwyer 's  extension. Both o f  these theorems 
are formal derivations of  the 5-term exact sequence for groups: Given a short 
exact sequence 

I --* N --+ G ---~ Q---+ I 
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o f  groups, the bottom part of  the corresponding Lerray-Serre spectral sequence 
is an exact sequence of  homology groups (with integral coefficients) 

H2(G) --~ Hz(Q) --~ N / [ N , G ]  -+ Hi (G)  -~ HI(Q)  ---+ O. 

Stallings' Theorem [St]. / f a  --~ ~ is a homomorphism ~71 groups induein,q an 
Lvomorphism on HI and an epimorphism on H2 then the imhu'ed maps a/cr h -~ 
~/~h. are isomorphisms ./or all 1 <= k < (o. 1/ 'a ---+ ~ is an epimorphism then 
a/c;'" ---+ 7r/rc'" is also an isomorphism. 

For k => 2, let ~/~h(G) denote the kernel of  H2(G) - - +  H R ( G / G  h-I  ). 

Dwyer 's  Theorem IDI. Let cr --~ ~ imhwe an isomorphism on HI. Then ./or 
2 < k < ~o the folhmqnq three conditions are equiralent: 

(1) f induces an epimorphism H2(cr)/~a(~)-+ H2(Tz)/~/~h(Tr). 
(2) f induces an Lsomorphism a/c~ h -~ ~/~z h. 
(3) f induces an isomorphism H2 ( c~ )/chh (a) --+ H2 ( Jr )~rich ( 7r ) 

and an injection H2((;)/r ---+ H2(rc)/@,+l(~). 

The previous two theorems apply directly to spaces (attaching cells of  di- 
mension > 3 to make spaces into K(z,  l)'s does not affect these low dimen- 
sional statements) and we shall freely apply them in that context. For example, 
qbh(X) is defined to be the kernel of  the composition 

H2(X) --+ Hz(K(rclX, 1)) : H2(lrI(X)) --* Hz(TzI(X)/~I(X)  h 1). 

Then Dwyer 's  functor {/~h has a more geometric interpretation: 

Definition. A closed k-grope is a 2-complex ntade hy replacinq a 2-cell in S 2 
with a k-~lrope. 

Lemma 2.3. Dwyer 's  subst?ace qbh(X) o f  H2(X) is precisely the subset q[  
homoloqy classes represented hy maps q[" closed k-gropes into X. 

Proq[; Let rc :=  r~L(X). We first observe that a homology class which is repre- 
sented by a map of  a closed k-grope is also represented by a map of  a closed 
l/2-grope of  order k. It is enough to show this for X a closed k-grope and 
the homology class the generator of  H2(X) 
bottom stage o f  X. Then the boundary ? of  
Now use the remark after Lemma 2.1 to get 
bounding 3' and reglue the 2-cell to it. To see 

�9 . Cut out a 2-cell from the 
this 2-cell lies in nl(X\2-cel l)  h. 
a map of  a l/2-grope of  order k 
that a homology class of  a space 

X represented by a closed 1/2-grope of  order k lies in q~h(X), take a represen- 
tative bottom surface Z of  the 1/2-grope o f  order k. The l/2-symplectic basis 
o f  curves o f  Z' to which the next grope-stages attach are mapped to ~h-I and 
so are trivial under the inclusion K0r, 1 ) C K(~/Tt k - I ,  1). This means that the 
homology class of-Y' becomes spherical and hence trivial in K(Tr/~ k - l ,  1). Now 
consider a surface Z' mapped into X which is null homologous in K(~/~ h-I ,  1). 
Let the null homology be represented by a map F of  a 3-manifold W. Think 
o f  K(~/Ir h-I ,  1) as X U2-cells U 3-cells U. . .  or by thickening as X U2-handles 
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O 3-handles O . . . .  Make F transverse to the ascending (singular) manifold 
A of  the attached handlebody. The compact 3-manifold W\, ~ ( F  I(A)) is 
a bordism in X between Z'  and another map of  a surface .[ : Z --+ X 
which, by inspection, has the property that a I/2-symplectic-basis of  Z maps to 
~, (core 2-handle), i.e. to the relations ~z ~-I It follows that (Z, . f )  
(which is homologous to Z ' )  extends to a map of  a 1/2-grope of  order k 
in to X .  [Zi 

~N (F-I(A)) with 
half-basis of cocores marked 

Fig. 2.3. 

John Milnor [M2] defined certain numerical invariants ~L for a link L in S s 
which extend without difficulty to the case of  a link in an integral homo- 
logy 3-sphere Z. We will define these invariants after recording some relations 
between the size of  O~(Z\L) and the comparison of  the groups ~I(Z\L)  and 
~ l ( ~ ~  with the free group on n generators. The symbol //'~ denotes 
0-framed surgery on an n-component link L in Z. Let V C Z\L denote a 
bouquet of  meridians to L and set F :=  ~I(V). 

Lemma 2.4. In the above setting, the,fidhm'ing statements are equivalent.fi, r 
k _ > 2 :  

(i) All (untn,isted) longitudes of  L hound maps of  k-gropes in Z\L. 
(ii) H2(Z\L) = Ot+l(Z\L). 

(iii) The hu'lusion V C Z\L induces an isomoq~hism 

F / F  ~+l ~---~, (Z \L ) /~ t (Z \L )  h+' 

(iv) H2(,U~ = r176 (J0r k = 2 this should he read as H2(Sf~ 
~- E," ). 

(v) The inclusion V C / f ~  induces an isomorphism 

F / F  ~ ~ l  (5/'~ (~'~ L ))~ �9 
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P r o o f  
(i) =~ (ii) By Alexander duality, H2(X\L)  is generated by the n tori parallel to 

the components of  L. These are obviously in ~/~+t(X\L) if the longitudes 
bound maps of  k-gropes. 

(ii) r (iii) follows directly from Dwyer 's  theorem since H 2 ( V ) =  O. 
(iii) =~ (i) Using (iii) we may write any (untwisted) longitude I as 1 ~ F / F  ~+l. 

If m E F is the corresponding meridian, the relation [m, l] = 1 in the link 
complement becomes [m, 1] = I in F / F  ~+1. Using the Magnus expansion 
[MKS, Chapter 5] (which is explained in detail below) this implies that 
l E  F h and by (iii) 1 E nl(XkL) k implying (i). 

(i) =~ (iv) Since k > 2, the longitudes of  L bound surfaces in X\L. These 
can be capped off by the cores of  the 2-handles in 5f~ to get a basis for 
H2( 5/~~ L ) ) ~- 2~". This construction shows that H2( 5/;~ L ) ) = ~/~ ( 5/~~ L ) ) 
if the longitudes bound maps of  k-gropes. 

(iv) r (v) is again Dwyer 's  theorem. 
(v) =~ (i) the commutative triangle 

F ~ t, n I (Z  \ L) 

n I (~'(L)) 

leads to three isomorphisms if one divides by the k th stage of the 
lower central series: This is true by assumption for [] and therefore 
becomes injective. Moreover, ~ also becomes surjective in any nilpo- 
tent quotient because the meridians become normal gener'ators since 
HI(Z')  = 0. But in any nilpotent group normal generators are also gener- 
ators which can be proved by an induction on the nilpotency class using 
the fact that a = b mod N implies x ~ - x b mod [G,N] for any elements 
a ,b , x  in a group G , N  C G. This proves that (v) implies an isomor- 
phism 

i. : n I ( X \ L ) / g I ( X \ L )  ~ ~- , n r ( 5 / J ~ 1 7 6  k 

from which (i) follows since the longitudes become trivial in n l ( S ~  
�89 

We may now define weak (with large indeterminancy) ~-invariants of  an 
oriented link L C X inductively as follows: The ?7-invariants of  length 1 are 
defined to be zero. Assume that statement (iii) o f  Lemma 2.4. holds for some 
k => I. We define integral valued ~L-invariants o f  length (k + 1) using the 
isomorphism from (iii) to get well defined elements {/  E F / F  k+j from the 
(untwisted) longitudes of  L. Then the Magnus  expansion (given by t/Ti v-~ 

1 + x i )  

M : F  = F(mj  . . . . .  m,,) ~ 7Z{xl . . . . .  x,,} 
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into the (units in the) ring of non-commuting power series can be used to 
define the numbers fiL(l,j) via 

~TL( I , j ) x  / := m ( / j ) .  
1 

Here 1 runs through all possible multi-indices but only those with exactly k 
entries (leading to the invariants ~L(I,./) of length (k+  1 )) are interesting: This 
follows from the fact thai the Magnus expansion maps F' to power series of 
the form 

I + terms of degree >= i (all x, have degree 1). 

By assumption / /  E F a / F  a+l and thus exactly the terms of degree k in 
M( / / )  are well defined and interesting. One knows [MKS, Chapter 5] that the 
Magnus expansion is injective and that the associated graded map (given by 
a H  M ( a ) - -  1) 

Gr(M)" Gr (Y) :=  (~DFa/F h+' ---+ (~degree k/degree (k + 1)=:  A,, 
/ ,>1 / , ~ 1  

into the free associative ring A,, in xl . . . .  ,x,, is a Lie algebra isomorphism 
from Gr(F) (with its Lie bracket induced by the group commutator [a,b] = 
aba tb t) onto the (free) Lie algebra inside A,, (with Lie bracket [0~,fl] = 
~fl - fic~) generated by xl . . . . .  x,,. This implies that the ~TlTinvariants of length 
(k + 1) vanish if and only if the (equivalent) conditions of Lemma 2.4. hold 
for k + 1. Moreover, it implies that the ~7L-invariants satisfy certain relations 
(which Milnor called shuffle symmetries) to keep G r ( M ) ( / / )  = M ( / / ) -  1 in 
the Lie algebra on the xi. 

Lemma 2.5. The fiL-invariants are cyclically symmetric, i.e. 

~L(il . . . . .  ix, j)  = -fiL(j il . . . . .  i~ ) 

i f  all ~L-invariants o f  len,qth < k vanish. 

Remark. For k = 1 this is the well known symmetry of linking numbers since 
one easily checks that }TL(i,.j) is the linking number between the i-th and j-th 
component of L. 

P r o o f ( o f  cyclic symmetry). The longitudes of L give elements / j  E F t / F  k+l 
which lead to elements [ml,/j] C FX+l/Fk+2. The 5-term exact sequence for 
the extension 

1 ~ F x+l ---+ F --+ F / F  x+j ---+ l 

gives an isomorphism H 2 ( F / F  k+l ) -~ Fk+l /F  ~+2 which we compose with the 
isomorphism of statement (iii) to get 

//2( ( X \ L ) /  (Z'\L)/'+1) ~ Fk+t / F  k+2 7I" 1 R" I z . 

It is easy to check that the elements [mj,{i] correspond (under this iso- 
morphism) to the image of the tori T i C S \L  parallel to the components of L 
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under the natural maps 

H2(Z'\L) --+ H2(TcI(L'\L)) ---+ Hz( ~ZI(L'\L )/~zt( L~\L ) ~+1 ) . 

n The cyclic symmetry of  the FL can now be derived from the relation ~ / = t  T/ = 

0 in H2(X\L) as follows: mapping this relation to F t + l / F  t+2 and then applying 
the graded Magnus expansion gives the following relation in A,,: 

0 = ~ x / G r ( M ) ( / / )  - Gr(M)( / i )x ,  = ~ E f i , , ( l , j)(x/xt  - x , x / ) .  
i=J i=l I/1=~ 

Focusing on the coefficients at xzx/ for some fixed index 1 = (i, . . . . .  i~) one 
immediately recovers the relations 

ilL(it . . . . .  ih, j)  = ~L(,/, it . . . . .  i~ ) .  E5 

Let Z be the unique contractible 4-manifold with boundary S, see IF1]. We 
will say that a link L C 2; is 4D-homotopieally trivial if it extends to maps 
A, : D 2 ~ Z with disjoint images. 

Remark. For (Z,S)  = (D4, S 3) this notion agrees with Milnor's [M1] "link 
homotopy" as we shall prove below. But if S is not simply connected then 
there are knots in S which are not null-homotopic but they bound a map 
A : D  2 - + Z  since ~ ( Z )  = {l}. 

Definition. Let  a group G be normally generated by elements gi, i ~ I. Define 
the Milnor group o f  G (rel g,) to he the quotient 

MG := G/[.q[,, .q],,] = 1 Vxi, y, E G, i E l .  

In [FT, Sect. 3] we show that for Ill = k the Milnor group M G  is a finitely 
presented nilpotent group of  class < k, see [M1] in the case o f  link groups. 
In particular, MG is a quotient of  the free Milnor group 

mFk :=  F(mL . . . . .  m~ )/[m~,,m~.,]=l . 

Usually the normal generators are clear from the context, for example 
Mnl(S3 \L)  or M ~ I ( Z \ A )  always refer to the meridians (to L, resp. Ai) as 
normal generators. 

Lemma 2.6. Let  L C X be 4D-null homotopic and let A = (A, . . . . .  A~) be a 
null homotopy. Then the meridian map induces an isomorphism 

MFk ~ M g l  ( Z \ A )  . 

Proo f  The second homology of  Z \ A ,  if A is in general position, is generated 
by the "Clifford tori" linking the transverse double points o f  A. As in [FT, 
Corollary 3.2], working modulo any term N of  the lower central series, a 
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bouquet of  meridians W to L induces an epimorphism 0: 

541 

nj(W ) / ~j (W) N ~) ~, n f ( Z \ A ) / ~ z  I ( Z \ A )  N 

N 
g~(W ~ 2-cells) / 7r~( W ~  2-cells) 

The "'meridians" and "longitudes" of  the Clifford tori now lilt along 0 to conju- 
gates of  the basic meridians of  W, m~ and m( ~. The 2-cells in the above diagram 

are attached to the commutators [m, ~,ml ~] and the map on space level extends 
to an epimorphism on/ /2 .  By Stallings' theorem, 0' is an isomorphism while 7, 
by the nature of  the relation 2-cells, induces an isomorphism on Milnor groups. 
Since we may assume N larger than the nilpotency class = k of  the Milnor 
group MF;,, 0 induces an isomorphism MFI,. ~ M n I ( Z \ A ) .  [] 

Remark .  Note that M n I ( Z \ A )  is obtained from n l ( Z \ A )  by adding finitely 
many relations of  the form Imp, m,] = 1 and these may be realized by intro- 
ducing additional self-fingermoves to the A~. Therefore we may always assume 
that the null homotopy A satisfies 

M ~ r ( Z \ A )  ~ 7 r l ( Z \ 3 ) .  

In [M1] Milnor showed that the Magnus expansion induces a well defined 
(and still injective!) homomorphism 

M M  : MFt  -+ Rh 

into the (units of  the) ring R~ which is the quotient of  the free associative ring 
A~ by the ideal generated by the monomials x,~...x,, with one index occuring 
at least twice. If  l~+l C Z\L is an additional component in the complement of  
a 4D-null homotopic link, L + := L U lh+l, then we define the /l-invariants of  
L + by the equation 

MM(I,~ ~l ) : ~ ItL + ( l , k  + 1 )x, E R;, 
I 

where I is a multi-index with nonrepeating entries from {1 . . . . .  k} and /~.+] E 
MF,,, is obtained via the isomorphism in Lemma 2.6. (and the inclusion Z'\L --~ 
Z \ A ) .  Using the injectivity of  M M  and the remark after lemma 2.6 we conclude 
that L + is 4D-homotopically trivial if and only if all lit +-invariants vanish. But 
Milnor showed in [MI] that this is also true for his notion of  homotopy for 
links in S 3. Therefore, 4D-homotopy and link homotopy agree in this case. The 
commutative diagram 

M 
nl (Z'\L) ~ F ~ ~{xi} 

M n l ( Z \ A )  ~ M F  ~ R 
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shows that t~(I) = ~(1) if  both invariants are defined, in particular 1 must have 
nonrepeating indices. 

Lemma 2.7. For a link L C S and k > 2 the Jbllowiny two statements are 
equivalent to all statements in 2.4. 

(a) All ficinvariants o f  lenqth < k vanish. 

(b) IJ L is any link oJ k (or fewer) components made from untwisted parallels 
~]" L, then L is 4D-homotopically trivial. 

Proof The equivalence of  (a) with the statements in 2.4. follows from the 
injectivity of  the Magnus expansion as discussed above. 

(a) ~ (b) First note that if the longitudes of  L bound maps o f  k-gropes 
in Z'\L then the longitudes of  L bound maps of k-gropes in S \L  (and vice 
versa if L contains each component of  L). By Lemma 2.4, the ~L-invariants 

of  length < k vanish. Choosing an ordering of  the components of  L we can 
now inductively prove that also all the llL-invariants vanish and thus L is 
4D-homotopically trivial. 

(b) => (a) By a simple induction on [I I we may assume that all ~L- 
invariants of  length < n < k vanish and thus we can use our definition 
for go ( l )  for III = n + l. To prove that the invariant ~L(I)  is trivial choose 
the link L = L(I)  to be formed from ni parallels o f  L, where n, is the number 
of  times the index i occurs in 1. Also form a new multi-index )" from 1 by 
replacing the n, occurrences of  the index i with distinct indices i / i , . . . , i /n, .  By 

definition, )" has nonrepeating indices and labels the (n + 1 )-component link L. 
Therefore, the invariant ILL(I ) vanishes since we are assuming (b). It follows 

that the invariant ~TL(I" ) vanishes. But a straightforward checking of  definitions 
shows that this invariant equals gL(1). One only has to observe that the rela- 

belling of  L to L changes a meridian m, to the product mi/i...mim ' and thus 
xi = GR(M)(mi)  is replaced by the sum xij~ + . . .  + xij,, . [] 

For the final construction in Sect. 5 we need one more Lemma on links in 
a homology 3-sphere S which uses the cyclic symmetry of  fi-invariants in this 
setting. 

Lemma 2.8. Let L C S have vanishin,q ~-invariants o f  lenyth < k and let 
R p C S \L  be a link with each component lyin9 in ~I(S\L)  k. Then there is a 
"weak" homotopy (not a Milnor link homotopy avoiding certain collision but 
just a general I-parameter motion in S\L ) o f  R / to R so that the link L U R 
has vanishin,q ~-invariants o f  len(Ith < k. 

Proof Each component r/ o f  R' bounds a singular grope of  class k in S\L. By 
general position these gropes have disjointly imbedded 1-spines S,. The desired 
weak homotopy pushes each r~ to a neighborhood of  Si where it bounds an 
imbedded grope Gi of class k, Set ri := OGi. Since the various Gi a r e  dis- 
joint and in particular Gi N (r  i U L) = ~ for i:~j,  we see that the longitude 
of  ri lies in ~l (X\LUR) k so all ~-invariants of  LUR of length < k ending in an 
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R-index vanish. By cyclic symmetry of the ~ (Lemma 2.5), the only 
~-invariants of  L U R of  length < k which could be nonzero would be 
those with only L indices. But the ~-invariants are natural under filling in the 
R-components so this would imply a nonzero fi-invariant of  length < k for 
the original link L against our hypothesis. 

3. Whitehead doubles of links 

To introduce the construction used to prove Theorem l.l we present a much 
simpler application which generalizes the main theorems of  IF2] and IF3]. Let 
L C S 3 be a smooth link. Wh(L) denotes an unramified, untwisted Whitehead 
double. This means each component / ,  has been replaced within its neigh- 
borhood by a component Wh( / , )  of  either form 

o r  

Fig. 3.1. 

so that the Seifert form on the punctured toms T, bounding Wh( / , )  within a 

neighborhood o f / ,  is o f  the form I~ g I" This last condition makes "untwisted" 

precise. The • ambiguity in the choice of  the clasp in Fig. 3.1 relates as we 
will soon see to the sign of  a double point in 4 dimensions. This sign will 
not be relevant in our discussion so the term "Whitehead double" refers to any 
of the 2 #~Lt possible links. In [F2] it is shown that if L is a boundary link 
then Wh(L) is slice (i.e. bounds disjoint flat disks in D 4) with rq(D4\slices) 
freely generated by meridians ("free slice"). In [F3] it was shown that the same 
conclusion applied to exactly those two component links with trivial linking 
number. 

Definition. A smooth link L = (/I . . . . .  #,)  in S 3 is (homotopically trivial) + i[" 
the n links o f  (n + 1 )-components obtained by adding a parallel copy o f  a 
single component / , ,  i = 1 . . . . .  n are each homotopically trivial in the sense o f  
[MI] (or 4D-homotopically trivial as in Sect. 2). 

Theorem 3.1. I l L  C 3 3 is (homotopically trivial) + then Wh(L) is f reely  slice. 

Remark. It is unknown whether homotopically trivial is an adequate hypoth- 
esis for this theorem. The still weaker hypothesis that all linking numbers o f  
L vanish would suffice if surgery "worked" for free groups. We note that (ho- 
motopically trivial) + is equivalent to the vanishing of all ~-invariants with at 
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most a single repetition of  one index. It is also equivalent to the meridian map 
inducing an isomorphism of  Milnor groups MF ~ M~I(.~P~ 

Lemma 3.2. Let L = ( / i  . . . . .  /, ,) and L' = (t'1 . . . . .  t~) he a parallel copy. The 
condition L is (homotopically trivial) + is equivalent to the existence ~[" disks 
{Ai} U {A;}, 1 < i < n, properly mapping into B 4 with ?A, = /,,~A~ = /; 
and di.sjointness assumptions: A, N A I = ~ /~r i + j  and A~ A A I = ~ fo r  all 
I <=i, j <= n. 

Proo f  The condition L homotopically trivial is known (see [L] or [FT, Lemma 
3.3]) to be equivalent to the existence of disjoint {A,, _< i < n} as above. 
In these terms, the + condition means that for each _-< j ~ n the {A/} 
can be chosen so that [/~] = e C gl(B4\{A~, ] =< i ~ n}). However, by 
Lemma 2.6 these groups for different choices of  {Aj} all have a common 
quotient ME,, the free Milnor group on n generators which is itself realized as 
~I(B4\{A,  1 < i < n}) for sufficiently complicated choices of  A,. Thus the 
null homotopies {A~, 1 < i _< n} all exist disjoint from {A,, I _< i _< n}. CA 

With the notation below the pair (B4;. ~"(hl )LS.,'| '(h2)) is a concrete model 
o f  a (positive) plumbed pair of  2-handles, see [FT]. The notation is: hi and 
h2 are two Hopf  circles in S 3 : ~'?,B 4 C I~ 2 and the , t" ' s  are 3-dimensional 
solid torus neighborhoods of  these. All orientations are taken standard with 
respect to complex multiplication. Reversing the orientation along one Hopf  
circle gives a negative plumbed pair. More generally, handles may be plumbed 
+ or - together in many (disjoint) places and self-plumbed to produce the 
kinky handles of  [F1 ]. 

L e m m a  3.3. The effect o f  introducing a �9 plumbing (or s e l f  plumbing) on 
the underlyin.q (Kirby) handle diagram o f  a handlebody is to introduce a new 
1-handle and a i clasp ~[" the attaching curve(s) o f  the 2-handle(s) being 

plumbed over this 1-handle as shown below 

before after 
(+ case) 

Fig. 3.2. 

i 

i 

, after 
0, (- case)  
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Proof (sketch). First identify a l-handle in the plumbed handlebody by taking 
a neighborhood of  two arcs leaving the "origin" o f  the plumbing on the two 
core sheets. The new attaching curves for two-handles are as before except that 
the attaching curves induced in the plumbing must now run up this 1-handle, 
i.e. through the dotted circle, in the diagram, clasp, and return. The sign o f  the 
clasp is worked out from the Hopf link model introduced above. [5 

Pror o/" Theorem 3.1. We introduce a specific 4-manifold N whose boundary 
?N is 0-framed surgery on Wh(L),?N ~ / f~  Set No : =  B4ULUL , 
2-handles, the result of  attaching 2n 2-handles with framing = 0 to the link L 
and its parallel copy L'. Now set N :=  N0/plumbings where for each 1 _< i _< n 
one plumbing is introduced between the 2-handles attached to /, and /~. The 
sign of  the plumbing is, for each i, chosen to agree with the sign o f  the 
Whitehead doubling of  the i-th component. 

Lemma 3.4. ?N ~ / / ' ~  n'ith the isomorphism cartTinq the meridians 
to the l-hamlles (see Lemma 3.3) to the meridians to Wh(L). 

Proof Inside a solid torus we have the following Kirby calculus identity: 

I axis 
I 
I 

o& 
isotopy 

~ onO ~ ~is~176 

I 

/ /  \ X 
/ /  \ \ 

/ / / ~  ~ a• 

/ axis -- kJ "~(~_ on3) 

/ / ~ ~ \ axis 
I I  \ \ \  

f f I 

" --  -k j"  

Fig. 3.3. 

Note that the z-axis initially marks the complement of  the solid torus. All clasps 
have been drawn ambiguously to imply the uniform treatment o f  both cases. 
Now apply this identity simultaneously in the n solid torus neighborhoods of  
{/i} to finish the proof. IS] 

Next we cap off the cores of  the 2n plumbed handles with the disks 
{Ai, A;, 1 < i <= n} produced by Lemma 3.2 to obtain an immersed union 
S of  2n spheres in N. (In analogy with Theorem 1.1 we would call the closed 
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regular neighborhood of  these spheres M but in this simple case the homol- 
ogy of M is spherical and we may finish directly). The fundamental group of  
N is freely generated by the n plumbings, that is, the solid torus neighbor- 
hoods ,.V(/i), 1 < i < n give a disjoint collection of 3-manifolds which by 
the Pontrjagin-Thom construction determine a map to ~/','=l $1 j which classifies 
the fundamental group of  N. It is easily seen that the disjointness conditions 
of  Lemma 3.2 assure that every loop in S reads the trivial word as it crosses 
the various .iV(~,). Thus S is Tel-null. Also the intersection form carried by S 

is (~,1 ~ 0 I" The plumbings contribute the nontrivial entries; the double points 
! 

d~ (1 dj contribute nothing since link(/~,{}) = 0 Vi, j .  While it is unknown 
whether S is homotopic to a disjoint collection of  imbedded hyperbolic pairs, 
it is shown in [FQ, Chapter 6] that such hi-null collections of  spheres are 
s-cobordant to disjointly imbedded hyperbolic pairs. This is adequate to "com- 
plete surgery", that is to produce a 4-manifold N '  with (3N' = 0N and with 

a map 0 to a wedge of  circles N ' ~  Si I which is an isomorphism on ~l 
and with the meridians to the l-handle curves for the diagram of  ~3N = ~')N ~ 
mapping degree 1 to the n circle factors. Clearly H2(N I) = 0 and therefore 
by [FQ, 11.6C(I )] 0 is a homotopy equivalence. It is now standard to observe 
that 

S 3 x 1 Uwh~L)x I (framed 2-handles) tO N ~ ~ B 4 

where the last union uses the identification of  Lemma 3.4 and (?N ~ = ~3N. The 
0-framed 2-handles now extend through the product collar S 3 x 1 to become 
the desired free slices on Wh(L) x O. 

4. A special case 

This section contains the proof o f  Theorem 1.1 in the presence of the extra 
assumption that nI(N\M) --, rq(N) is an isomorphism. This is often described 
by saying M is nj-negligihle and is a very familiar condition in 4-manifold 
theory. Removing this assumption adds a final layer o f  subtlety to the argument 
which will be defered until Sect. 5. 

But let us first collect the elementary homological consequences of  the 
other assumption, namely that HI(~?M) ~ HI(M) is an isomorphism. Consid- 
ering the horn-dual o f  the isomorphism and the universal coefficient theorem, 
we see that HI(M) --* HI((?M) is an isomorphism. By Lefschetz duality 
H3(M, (~M) --~ H2((?M) is also an isomorphism. From the exact sequence of  the 
pair (M,(?M) we now conclude that H2(M) --~ H2(M,~3M) is an isomorphism 
and HI(M, OM) = 0. Similarly, 

0 = Ht(M,(?M) TM H3(M)  ~- free(H3(M)) | to r s ion(Hz(M)) ,  

so H2(M) is free and 

H2(M) ~- H2(M,(?M) TM H 2 ( M )  ~ f ree(H2(m))  | to r s ion(HI(M)) ,  

and therefore HI(M) is also free. 
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Definition. We say a group n is weakly-para-free (f  there is a map .fi'om a 
free  group F --+ n inducing isomorphism on all the .finite quotients o]" the 

lower central series F/F ~ ~ n/n ~, k = 2, 3 . . . . .  

We know that HI(M)  ~ HI (?M)  are free abelian so let ~: " V ~ ?M be 
any map from the wedge of  n-circles to ?M inducing an isomorphism on H~. 
Now considering s:# " nn(V) ~ nl(~'~M) one finds 

Lemma 4.1. n l ( ? M )  and zh(M)  are both weakly-para-free with the inclu- 
sion q[" the wedge V inducing the required map. Also the map n I ( ?M)  --~ 
h i ( M )  is an isomorphism modulo an)' .finite term q[' the lower central 
series. 

Proof  Consider the composition V & i~M 2+ M. Since the homology of  M 
is "nearly spherical" in the sense that 4),,,M = H2(M), Dwyer's  theorem tells 
us that both maps i and i o ~: with target M (which we already known induce 
isomorphisms on HL) induce isomorphisms on all finite quotients of  the lower 
central series. Applying the functors n l / (n l )~  k > 2 to the diagram proves 
the Lemma. 

Define MI C N to be 

MT := M U 2-handles/plumbings and self-plumbings. 
{;',} 

(4.1) 

The submanifold MI is simply what can be produced from M by using the 
hi-null and ltj-negligible hypotheses on M. Specifically, take any collection 
of n disjointly imbedded circles {7'1 . . . . .  7,} in ~M homotopic to the petals of  
V and cap these off by n general position null homotopies 61 . . . . .  ~, whose 
interiors are disjoint from M. The submanifold Mi is simply a regular neigh- 
borhood of M U (U;'_16,). By the basic theory of  topological immersions [FQ, 
Chapter 8] Mi may be described combinatorially as in line (4.1) where the n 
2-handles determine definite normal framings f ,  on 7, ()'i and its parallel 3,~ 
should bound chains with intersection number 0 in the plumbed 2-handles). 
Let X := .~/~cM((Ti, J)), i = l . . . . .  n) be the abstract homology sphere which 
results as the boundary o f  the abstract 4-manifold MU{:.,,/, / (n 2-handles). It 
is abstract in the sense that it is not a submanifold o f  N, but our strategy 
is to construct another abstract manifold M2 with a canonical isomorphism 
c3M2 ~ ?M1 and such that H2(M2) is represented by a hi-null collection of  
spheres. 

To begin the construction of M2, let Z be the unique contractible manifold 
bounded by S, see [F1]. We may consider (Kirby) handle diagrams drawn in 
S = (?Z. To start notice the n-component link (ml . . . . .  m , )  C S consisting of  
meridians to (3'l . . . . .  y,,) C 0M. O-framed surgery on (ml . . . . .  m , )  is naturally 
identified with ~?M, reversing the initial surgery. Furthermore, the 0-framed 
meridians /{I,.-.,/~,~ to m j . . . . .  m, become (TJ,.J']) . . . . .  (~/n, J , )  under this iden- 
tification. Now Lemma 3.3 can be exploited to give a Kirby diagram for 8Mi 
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in 2; as shown below 
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17 \ m, 

Fig. 4.1. 

What we see are the meridians m,, their meridians It~ modified to It, by clasps 
(induced by some number of  (self-)plumbings and 1-handle curves linking these 
(self-)clasps. The figure shows ttr and tt,, with one clasp and one, respectively 
two, selfclasps. The geometric shape of  the m, reminds us that their detailed 
position in 2," is unknown. As in Sect. 3 the sign :t: of  the clasp is intentionally 
suppressed in the figure. 

We define 1142 as realizing the boundary equivalent link diagram in ~Z = X 
where each clasp has been "blown up" to a 0-framed Hopf  link and each 
iti, 1 <- i <_ n, has been made into a I-handle (given a dot) as shown (locally) 
below. 

Pi 

Fig. 4.2. 

,( 

Thus M2 is defined as Z U l-handles U 2-handles according to Fig. 4.1, as 
modified locally in Fig 4.2. 

We may change the handlebody structure of  M2 (but not its homeo- 
morphism type) by Morse cancelling each It, with mi, 1 -< i -< n. The result 
(using the same multiplicities as in Fig. 4.1) 
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Fig. 4.3. 

Lemma 4.2. Any link consis'ting o/ untwis'ted parallel copies o / 'L  :=  
{ml . . . . .  m.} in S bounds di,~johtt maps o[" disks into Z. 

Proof According to Lemmas 2.4 and 2.7 exactly the links L C S with nl(S\L) 
weakly-para-fi'ee admit disjoint maps of  disks on any number of  parallels. Since 
?/~?(L) = ?M, Lemma 4.1 says that nl(,c/~)(L)) is weakly-para-free. By Lemma 
2.4 this is equivalent to nl(Z\L) being weakly-para-fi-ee. [] 

Using the 2-handles in Fig. 4.3 to form the "northern hemisphere" and the 
singular disks in Z located by Lemma 4.2 as "southern hemisphere" we see 
that the entire second homology of  M2 (with group-ring coefficients) is freely 
generated by a nt-null collection of  spheres with hyperbolic intersection form. 
The verification is much the same as in Sect. 3. 

As in Sect. 3 we use [FQ, Chapter 6] to s-cobord the spheres to a disjointly 
imbedded collection of  hyperbolic pairs. Removing these pairs by surgery yields 
a 4-manifold M 3  with ~ M  3 = ('~M2 = ?ML, and as at the end of  Chapter 3 a 

homotopy equivalence M3hw to  a wedge of  circles which takes each meridian 
to a 1-handle of  Fig. 4.3 degree I to a distinct circle factor. The free genera- 
tors correspond to the double points of  the null homotopies {61 . . . . .  6n}. The 
manifold N: asserted by Theorem 1.1 is defined as (N\MI)Uid M3- 

We now construct a map g : N + --+ N'. Set gtN\Mt :=  identity. Near 
each self-plumbing of  the 2-handles in the combinatorial description (4.1) of  
Mi we may locate a solid torus dual to the arc which changes sheets at the 
selfplumbing. These tori, by the Pontrjagin-Thom construction, determine a 
map MI --~ W which extends (uniquely up to homotopy) to a map MI U3-ce~ls 
--+ W. On ~?M1 = (?M3 this map restricts to h and thus provides an extension 

q 
of  the identity on (')M~ = ~ M  3 tO a map Mt U 3-cells ~M3.  Let this last map 
be g restricted to ML U 3-cells. 
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To check that g induces an isomorphism on gl we ignore the 3-cells and 
consider two interconnected pushout diagrams of groups. 

gI(MO = flee 

Z nJ(MI) rcl(N' ) 

T,, 
r c ' ~ T r L ( N )  

n~(N \ Mr) 

The groups hi(N) and nj(N ~) are pushouts of  maps (1,2) and (3, 2) respec- 
tively. Map 4 is the restriction of q and map 5 is any splitting of map 4. By 
construction, map 6 is the restriction of  g and we want to show that map 7 
is its inverse. By the pushout property map 4 (resp. map 5) induces map 6 
(resp. map 7). Since map 4 o map 5 = id, map 6 o map 7 = id on nj(NI). 
To check that map 7 o map 6 is also the identity we need to know: 

ker(map 4) C ker(map 8) (4.2) 

for map 7 o map 6 would then change a standard-form word for h i (N)  only 
on the letters in nl(Mt)  and these letters would only change by an element 
of  ker(map 5 o map 4) which is no change at all in hi(N). To check (4.2) 
observe that ker(map 4) = normal closure (image map 9) and that nt-nullity 
states that map 10 is zero. With n := nj(N +) ~ nj(N') ,  define 

K, := ker(Hi(N; ]g[n]) + / / i ( N ' ;  2g[n])), 

K i := coker(Hi(N',~7[n]) ~ H ' ( N , ~ [ n ] ) ) .  

Since N -~ N'  is a degree l map cap product with the fundamental class 
induces isomorphisms K, ~ K 4-i, i = 0 , . . . , 4 .  Also since HI (  �9 ;~[n])  is the 
first cohomology of the n-cover with compact supports it depends only on g 
implying K3 ~ K I = 0. Thus /s is the only non-trivial horo logy  kernel. Set 

Mz C N to be the inverse image of Mi. Then M] consists o f M  = (n-copies of 
M)  union various singular disks A with H2(A,~?) --~ HI(M) an isomorphism. 

Thus H2(M)~H2(I~I ) is an isomorphism. The image of /~ t  under ,q is some 
cover of M3 -~ W and so has no second homology. Excision then implies 

K2 = image(H2(/141 ) ~ H2(N) ~ Hz(N; 7/[gr])), (4.3) 

and also 
H2(~II ) ~ H2(~4 ) ~- H2(M) @z 7Z[n]. (4.4) 
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According to the beginning of  Sect.4, our hypothesis HI (?M) ~ HI (M) implies 
that H2((?M)---, H2(M) is zero and by the Mayer-Vietoris exact sequence the 
map H 2 ( M ) ~  7/[n] --+ H2(N) induced by the inclusion must be an injection. 
It follows from lines (4.3) and (4.4) that 1s ~-H2(M)c~)z;gn. Precisely a free 
basis for this module is killed by 3-cells in passing to N +. It follows that 

g : N  ~- --~ N' 

induces an isomorphism on Hi( ;2~[n]) ,  i -- 0 . . . . .  4 and by Whitehead's 
Theorem .q is a homotopy equivalence. Since the only interesting part of  ,q is 
a 2gnL(M3)-homology equivalence MI U 3-cells-+ M3 any torsion would come 
from Wh(nl(M3)) = Wh(free) = 0. Thus ,q is a simple equivalence. This com- 
pletes the proof of  Theorem 1.1 under the assumption that M is hi-negligible. 

5. The proof of Theorem 1.1 

This section completes the proof o f  Theorem 1.1. Let 6' = {6' I . . . . .  6,',} be null 
homotopies in N for 7J . . . .  ,Y,, which initially leave M in an outward normal 
direction but may return to M. Since Hl(c~M) -~ HI(M) is injective each com- 
ponent C; o f  6 ' - J ( M )  may be replaced with an orientable surface C, r = (?C; 
and C mapping to ~3M, extending 6' on ?C' .  Set/5 = (/5'\UC)U(UC) together 
with the map to N. By construction, HI(UC)  --, H1(/5) is an epimorphism so a 
symplectic basis (c~,fl) for Hi((5) may be chosen to consist of  imbedded hyper- 
bolic pairs o f  loops in UC; by hi-nullity the loops bound singular disks # in 
N. Thus we have capped off {7,} with capped surfaces /5 U ~:t Putting things 
in general position we have i5 A M = (~6 and ~:'N M = some planar surfaces 
in M. If nI(M,(?M) was trivial we could homotope t:' to achieve that t?' N M 
is a disjoint union of  disks, an advantageous condition. By Lemma 4.1 we do 
know however, that for all k 

nt(OM)/nl(~')M) ~ --~ n t (M) /n l (M)  h 

is an isomorphism. Let c denote the number of  components of  ~J N M. We fix 
a large number K, to be specified later, and add tubes along ~')M to ~;~, to form 
::, so that ~ NPM consists of  a collection of  c circles which lie in n~(~')M) K 
and so that ~:\M is a collection o f  disks with a total of  c punctures. 

It is now possible to draw a handle diagram relative to some contractible 
manifold Z, as in Fig. 4.1 to describe the boundary of  a neighborhood of  
(M U/5 U ~:). Some "small" changes made to /5 and ~: improve the diagram to 
the type drawn below. After these changes we think (roughly) of  the diagram 
as representing a 4-manifold M2, although we have yet to interpret the dotted 
components lq . . . .  ,ll,, which may not form a slice link. If these components 
are not a slice link in Z the diagram only makes sense as the description of  a 
3-manifold. Later we will arrange that these components are slice in a space de- 
rived from Z, namely in Z # S 2 x S2's, allowing a 4-dimensional interpretation of  
these components as "pseudo-l-handles" in a stabilized diagram for a manifold 
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M +. Below we have the analogue of  Fig.4.1 as modified by Fig.4.2. The back- 
ground space for Fig. 5.1 is the homology sphere Z" = (')Z = ,9",'M{~,'l . . . . .  7,}- 

0 0 i 

- 

Fig. 5.1. 

The new feature in Fig. 5.1 is the "tumor" on the left. It arises (along with 
many similar copies on all ~t, which have not been drawn) by cancelling the 
"Bing pairs", associated in the diagram with the surface stage 6, with the 
2-handles corresponding to ~:. The punctures in ~: give rise to the new 1-handles 
and "rectangular" components as in Fig. 5.2 below. 

~\M with 
one puncture~ ~ ~ l " ~ J " ' ) L _ _ . _ ~ ~ \  ...... 

. . . . . . . .  

t ~ with 2 punctures 

I 
Fig. 5.2. 

Absent from Fig. 5.1 are representations of: 
(1) (~, 6) intersections, 
(2) (~:,t:) (self)-intersections, and 
(3) nonzero e-framings. 
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By "spinning" (see [FQ, 1.3]) the framings of  the 2-handles in Fig.5.2 may 
be made zero. This introduces (new) intersections of  type (1). All intersections 
of  type (1) and (2) can be removed by a move in which a sheet of  6 containing 
a bit of  ?4: is pushed along an arc in c through the troublesome intersection 
point (see [FQ, 2.5]). The cost of  this move is additional (6,~i)-intersection 
points but we have allowed for these in Fig. 5.1. 

A final improvement (not actually visible in the diagram) will be to arrange 
that the link L U R, the union of L :=  the "triangular" meridians m, and R :=  
the "rectangular" components of  Fig. 5.2 is a rather weak link. Recall that in 
our construction of  M2 a large number K was fixed. Using Lemma 2.8, weakly 
homotope the "rectangular punctures" R of  c in ?M, extending c continuously in 
the normal direction, so as to make the link L U R have vanishing i/-invariants 
of  length < K. This creates new (c,c)-intersections which are removed as 
before. Choose the number K such that 

K > (1 + #,))n + 2c (5.1) 

where #a is the number o f  group elements in rcLN represented in the double 
points of  6 and c is the number of  components of  R. In moving R' to R 
many new double points o f  c (and thus 6) are created and we have no way to 
estimate the number. However since ~0M C N is 7h-null and we count group 
elements only in the group TciN, at most 2 .  (~) distinct group elements arise 
fi'om these double points, and precisely these same elements arise when the 
(c,c)-intersections are transtbrmed into (6,6)-intersections. Thus it is possible 
to pick the number K early in the construction of  M2 (as we did) tbr the 
necessary value can be estimated from the number of  components (=  c) of  
{" (-I M and the original double points of  6. 

We can now turn to the construction of  a n  M3 satisfying ?M3 ~ (')M2 = 

Pneib(MU6Uc)  and M3 ~ V S  I �9 The first point to address is that in Fig.5.1 we 
formally changed 0-framed 2-handles tt, to l-handles p, (note the dot) as in 
the passage from Fig.4.1 to Fig.4.2. To justify this we must find slice disks for 
these components. This requires an S 2 x S2-stablization which we will remove 
later. 

Consider the visible (band-like) Seifert surfaces T = {TI . . . . .  T,,} for 
ILl . . . . .  It,, in Fig. 5.1. These meet ml . . . . .  m,, dually (6,j) and would be suit- 
able for cancellation if they were disks. Push the interiors of  Ti slightly 
into the contractible manifold Z. Let (~,[~) denote the obvious symplectic 
basis; this is actually the one fixed earlier on 6. Because of  the 0-framings, 
we may perform along {c~} an abstract surgery of  pairs o n  (Z,T pushed) to 
obtain ( Z # S  2 x S2's ,D) where D is a disjoint union of  n imbedded slice 
disks tbr lq . . . . .  I~,. Morally, M2 ~ is M2 stablized by these surgeries. To be 
precise, Fig. 5.1 finally has a meaning as a 4-manifold M + since we now 
have a place, Z + :=  Z # S  2 • S2's, to locate the slices indicated by the dots 
on l q , . . . , l ~ , , .  We assume without loss of  generality that each 6L . . . .  ,6,  has 
at least one selfintersection as shown in Fig. 5.1. This enables us to compute 
~,(M[). 
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Lemma 5.1. ~ l ( M ] )  Ls" ./reely ,qenerated by the l-handles g f  Fi~,t. 5.1 (We 
exclude here the pseudo-l-handles /tl . . . . .  ttn which bound slices in Z + aml 
are not technically l-handles. ) 

Proo f  For each its, l __< i :< n, choose a 2-handle from a hyperbolic pair 
generated by resolving a selfintersection of 6,. Cancel this 2-handle with tL,. 
Literally this means filling in the slice under tt, with the handle. Fig. 5.1 loses 
the canceled components and the partner of  the canceled 2-handle is joined 
to a parallel copy of It, by a band. In this reconstituted Fig. 5.1 the attaching 
regions of all 2-handles can be homotoped off" the standard disks spanning 
the 1-handles. These homotopies, because of the "rectangles" in Fig. 5.1, do 
not exist in s but rather in Z+\(1-handle slice disks). After these 
homotopies we see a homotopy equivalent space whose fundamental group is 
as claimed. L~ 

The homology of Z + is conveniently represented in the complement of D 
by singular spheres of types A and B. An A-sphere has "northern" hemisphere 
the core-D e bounding (a parallel of) e provided by surgery and "southern" 
hemisphere a null homotopy of ~ descending further into Z. A B-sphere is 
made from the toms of length 2~: normal vectors of T C Z restricted to [4 by 
removing an annular neighborhood around the "lowest" longitudinal copy of /J  
and gluing in two "southern" null homotopies of [~ descending into Z. In order 
to get the above torus (and thus the B-sphere) inside Z +, the support of the 
abstract surgery (turning Z into Z +) should be in an ~:-neighborhood of ~. 

Because p, and mi, 1 <_ i < n, cancel homologically, the second homology 
of M2 + is freely generated by singular spheres of types A,B, and C where the 
spheres of type C are constructed as follows: Consider the n singular punctured 
spheres Vi . . . . .  V,, in M2 + made by capping off "southern" null homotopies for 
ml . . . . .  m,, in Z with "northern" core disks of  the attached 2-handles. Each V, 
acquires a single puncture where it crosses the slice disk for it,. To construct 
a sphere of type C resolve the puncture on a parallel copy of some V/ by 
tubing along it i to the longitude of the attaching circle of one of the 0-framed 
2-handles linking it~ which were introduced (as Hopf links) to resolve the 
clasps (coming from the double points of 6), see Fig. 5.1. In this way we get 
two spheres of  type C for each such Hopf link. 

If  all the "southern" null homotopies A in Z (more precisely Z\collar (?Z) 
used in the construction of A,B, and C are disjoint then 

(5.2) A tO B U C is a rtl-null collection of spheres representing 

the basis of a hyperbolic form in fez(M+). 

Actually, less disjointness is required to obtain (5.2). Let A = AA U A8 U Ac be 
the null homotopies needed to form "southern" portions for classes A,B, and 
C respectively. We make Ac from many parallel copies of a collection Ac, o 
of disjointly immersed disks described below. Each C-hyperbolic pair derives 
from a double point of 6. The set .9 ~ of elements of 7z]N represented by these 
double points has cardinality #~, see (5.1). Assume that Ac, o are disjoint null 
homotopies in Z for (1 +#,3) parallel copies of  L = {ml . . . . .  m,,}, divided into 
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Ac,0 = A 1 U A z where A I consists of  null hornotopies on one copy of C, 0 C, 0 C, 0 

L and A2,0 consists of  null hornotopies on #~ copies of L. Arbitrarily divide 
each C-hyperbolic pair into a first and second partner. This division produces, 
on southern hemispheres, Ac = A~ U A2,. Assume all the A~, are made from 
near parallel copies of A 1 and also that A 2. consists of near parallel copies of C, 0 

c,0. It is important to make precise which copy of A2c,0 these additional null 
homotopies should be parallel to. The choice is made by looking at the group 
element in ~jN of the corresponding double point of 3 and using a bijection 
o f / f  with the parallels of L. Finally assume that all null homotopies AA and 
A~ are disjoint from each other and A~;0 (and thus Ac). 

With these conditions (5.2) continues to hold, but the required collection 
of disjoint null homotopies A0 := Ac~oUAA UAB C A, is much smaller. In fact, 

card(At, o) _-< (I + #~)n. 

Furthermore, ~Ac, o is made from parallel copies of the link L and (~(AA U 
AB) is made from at most 2 parallel copies of the link R by "fusing" (banding 
together) certain pairs of components (two copies of R are needed to produce 
~AB). Thus A0 may be constructed if the link made by taking (1 + #,~) par- 
allel copies of L and 2 parallel copies of R is 4D-homotopically trivial in Z. 
But by Lemma 2.8 this is assured by the condition that L U R has vanishing 
~-invariants of  length < (1 + #~)n + 2c, compare (5.1). 

We finish as in Sects. 3 and 4: Use [FQ, Chapter 6] to s-cobord A U B U C  to 
disjointly imbedded hyperbolic pairs and remove these by surgery. The result 
M~ of surgery is homotopy equivalent to a wedge of circles with generators 
corresponding to the meridians to all the one-handles in Fig. 5.1 (excluding 
lq . . . . .  It,,). The manifold N ~ = ( M \ M I ) U M 3  is shown to be simply homotopy 
equivalent to N + by the direct analogs of diagram 4.4, to compute gl, and 
lines (4.3) and (4.4) to compute homology. [] 

6. The normal bordism 

This section gives the proof of Corollary 1.2. We suppress the boundaries ~?N 
and c~X from the notation since they play only a small role. 

Given a degree l normal map f : N --+ X inducing ~l-isomorphism and 
kernel Kz represented by M, construct N + and N' as in Sect. 5. Consider 
following diagram 

v ( N )  t~" I, 

N t ~ X 

P N '  ~ h ~  " N + 
h4 

) 
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Above (hi ,h2)  and (h3,h4) are two pairs of  (simple) homotopy inverses. The 
bundle ~ has structure group TOP, v(N) is the TOP stable normal bundle to 
N, and q :=  (h4 oh l )*~ .  

We next check that q is isomorphic to the normal bundle of  N '  (with 
the isomorphism covering idx, ). To compare pull v(N' )  and ~ back to N+; 
h~'~ and h~v(N') are identical over N\MI so the difference is measured in 
Hi(MI, ()MI; ;c, BTOP) ~ H4-t (MI;  ~z, BTOP). Since MI has the integral homol- 
ogy of  a wedge o f  circles and Ir3BTOP = 0 the only possible difference lies in 
Ho(MI; rr4BTOP) ~ 7/. But this obstruction is associated to the first Pontrjagin 
class or (eight t imes) the signature and must vanish since s ign(X) = sign(N/).  
It follows that hT?, "~ h~v(N r) and therefore q ~ v(N') .  

v(N) q v(N) 
t t 

Certainly g : N --+ N ~ is equivalent to f : N --+ X, so to prove Corol- 
lary 1.2 - that f is normally cobordant to a (simple) homotopy equivalence - it 
suffices to show that g is normally cobordant to id/v,. Since s ign(N) = sign(N ~) 
the nolTnal invariant n of  g lies in H2(N';77/2). Since g and idN, agree over 
(N ' \M3)  the image i* (n) = 0 C Ha(N~\M3;77/2). On the other hand, com- 
bining the exact sequence of  the pair with Lefschetz Duality and excision we 
obtain 

H2(N ', Nt\M3; 77/2) ~ H2(N' ;  77/2) 

II 
H2(M3,(gM3;77/2) ~-~ H2(M3;2~/2) = 0 

l* -----+ H2(N'\M3; 77/2) 

This shows that i* is an injection. Thus n = 0 E H2(N';77/2) proving 
Corollary 1.2. L~ 
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